

Sustained and Targeted Ocean **Observations for Hurricane** Research and Forecasts

Prepared by: Cheyenne Stienbarger (NOAA GOMO) and Gustavo Goni (NOAA AOML)

TCORF/IHC | MARCH 9, 2022

HOW TCs IMPACT THE OCEAN

Temperature and salinity response:

- TCs deepen the upper ocean mixed layer, cool the sea surface and warm the subsurface
- Sea surface loses heat through air—sea heat flux, there is also a significant mixing effect for the sea surface cooling
- Freshness of the sea surface by precipitation increases the upper ocean stratification and weakens the TC-induced mixing

IMPORTANCE OF REPRESENTING THE OCEAN

HURRICANE MICHAEL (2018)

- Decades of research and operational activities conducted by NOAA and our partners have solidified the ocean as a key component of the tropical cyclone (TC) intensity change
- Correctly representing the ocean can reduce intensity error by over 50%

Le Henaff et al. 2021

IMPROVING FORECASTS THROUGH **OCEAN DATA ASSIMILATION**

Observed

Assimilate Ocean Data

Use Climatology

Ignore Ocean Data

> Le Henaff et al. 2021 **Hurricane Michael (2018) OSE**

员

OCEAN OBSERVATIONS

Essential Ocean Features (EOFs)

- GOAL: provide ocean observations to improve how the ocean component is represented in hurricane forecast models
 - Sustained mode: when ocean observations are focused on the sustained monitoring of EOFs (e.g., ocean currents, gyres, global ocean heat content)
 - Targeted mode: when they are dedicated to assessing features known to be linked to hurricane intensity changes

UNDERWATER GLIDERS

- Autonomous Underwater Vehicle (AUV)
 - Piloted from ground
- Profiles of **T, S, O₂, pH, CDOM**, surface and depth-average currents
- 5-20 dives per day to 200-1000 m depth
- Operate and transmit data under hurricane wind conditions; real-time data transmissions to GTS
- 44 Hurricane Glider missions in 2021 (U.S IOOS, IOOS RAs, Navy, etc.)

SAILDRONE (UxS)

Observing the air-sea interface with Saildrones

Participants: PMEL, AOML, UW, CIMAS, SECOORA, NESDIS CW

K\$

SAILDRONE-GLIDER **PAIRS**

- 5 saildrones operated for combined 502 days during the 2021 hurricane season
- 100 days of saildrone-glider co-located measurements
 - 30 dropsondes also deployed near saildrones
- First air-sea measurements from an uncrewed surface ocean vehicle in a major hurricane (Sam)

DRIFTERS

Credit: Scripps LDL

Satellite-tracked surface drifting buoys

- Provide accurate and globally dense set of in-situ observations of mixed layer currents, sea surface temperature, atmospheric pressure, winds and salinity
- Sustained and targeted (depending on type)
- Wave array deployments (2021) captured 3 hurricanes and 2 tropical storms with Directional Spectra Wave Drifters (DWSD)
- **A-sized** *Directional Wave Spectra Drifters* initial tests courtesy of AOC

ARGO FLOATS

- Sustained array of Argo floats are dispersed throughout the Gulf of Mexico and the Atlantic
- Provide valuable T, S, and P profiles during cycling
- Rapid cycling (2.5 days)
 piloted during the 2021
 hurricane season

Credit: Steve Jayne, WHOI

ALAMO FLOATS

- <u>A</u>ir <u>L</u>aunched <u>A</u>utonomous <u>M</u>icro
 <u>O</u>bserver (ALAMO)
- Smaller profiling float that can be deployed through the chute installed in the back of a plane
 - Smaller Argo-style float that will fit in the AXBT launcher
 - Capable of 100 150 profiles to 1000m
- 7 Successful ALAMO deployments from the C-130 during 2021 season

Hurricane Dorian (2019) Dropsondes – Glider Coordination

NOAA Hurricane Glider – NOAA P-3 GPS Dropsonde Coordination

EXTREME EVENTS OCEAN OBSERVATIONS TASK TEAM

Priority Recommendations:

Coordinate observations

Evaluate observation impacts

Improve data assimilation

Prioritize for future operations

COORDINATED OCEAN OBSERVING

https://cwcgom.aoml.noaa.gov/cgom/OceanViewer/index_phod.html

큉

& ₩

ASSESSING OBSERVING SYSTEM DESIGN

- Highlight the importance of sustained ocean observations on improving operational ocean and coupled atmosphere-ocean models
- Perform Observing System Simulation Experiments (OSSEs) and Observing System Experiments (OSEs)
- Desired outcome: design and propose to NOAA an integrated ocean observing system that has an optimal impact on the forecast models

Example: impact of glider profiles improving data assimilation for *Hurricane Isaias*

Credit: Ling Liu, Jong Kim, Cameron Book and HeeSook Kang [NOAA IMPACT]

FUTURE PLANS: COMBINING CAPABILITIES

Glider = Yellow Saildrone = Red

- Planning for an integrated field experiment
- Co-located and quasi simultaneous observations of the full air-sea transition zone with autonomous vehicles
 - Atmospheric boundary layer: small Uncrewed Aircraft Systems (sUAS)
 - Air-sea interface: Saildrone
 - Upper ocean: Gliders
- Supplement with sustained observations to improve initial conditions (Argo, drifters, gliders) and targeted observations (aircraft instruments, expendables, etc.) before/during/after a storm

SUMMARY

- Highlighting the need to accurately represent the ocean component (to complement the atmosphere) and better observe & understand the air-sea transition zone
- Working to increase the **situational awareness** of the types of ocean observations available to highlight **opportunities for colocated observations** from aircrafts, expendables, etc.
- Continue evaluating the impact of these various observations on the models
- Continue building a **foundation** for a future sustained observing system for hurricane research and forecasts

PARTNERS

NOAA

IMPROVEMENT PROGRAM Scripps Institution of Oceanography's LAGRANGIAN DRIFTER

HURRICANE FORECAST

WEATHER

PROGRAM

OFFICE

LABORATORY

Integrated Ocean Observing System

Contact:

cheyenne.stienbarger@noaa.gov

gustavo.goni@noaa.gov

HURRICANE IDA (2021)

- fresh water barrier layers
 and ensuring their accurate
 representation in the models
 (RTOFS, GOFS), as well as the
 importance of coastal/shelf
 observations
- Ocean conditions (Loop
 Current) kept Ida strong, and
 favored **intensification**

ARGO FLOATS + IMPACTS ON MODELS

- 50 Argo floats in the Gulf of Mexico and Caribbean were rapid cycling
- Rutgers is currently working to assess the impact of these rapidly cycled floats on RTOFS - which is used to initialize the coupled operational hurricane forecast models
- Beneficial for better understanding T, S, OHC, potential energy anomalies, etc. throughout the season and in advance of an approaching storm

